Nieuws

9 februari 2017

Modellen zijn niet perfect

De meeste wetenschappers werken met modellen, maar per discipline denkt men verschillend over dit hulpmiddel. Wat zijn de beperkingen? Zijn ze wel objectief? En zo niet, is dat erg?

Een rivierbedding nagebootst in een loods, een wasmodel van een embryo of algoritmen die klimaatverandering voorspellen: modellen heb je in alle soorten en maten. Onderzoekers gebruiken ze om grip te krijgen op het ongrijpbare. In de reeks Spiegeltje, Spiegeltje staan representies centraal. Dr. Daan Wegener (Geschiedenis en Filosofie van Wetenschap, UU) legt in de openingslezing uit dat elk model een specifiek doel dient en niet per se een compleet beeld van de werkelijkheid beoogt te geven. Toch is er kritiek op het gebruik, want representaties zijn nooit objectief. Wegener werpt daarom een wetenschapsfilosofische vraag op: wat is objectiviteit eigenlijk en waarom is het belangrijk hiernaar te streven?

Nu kan iedereen de ringen van Saturnus door een telescoop zien. In de zeventiende eeuw gebruikte men modellen om te onderzoeken welke vorm de planeet precies had.

Een stukje van de werkelijkheid

“Modellen staan in het hart van de wetenschappelijke praktijk en dienen verschillende doelen: ze maken ideeën tastbaar, hebben een bemiddelende rol tussen theorie en realiteit en zijn een bron van creativiteit,” zegt Wegener. Hij bespreekt drie typen: concrete modellen, wiskundige modellen en analoge modellen. Een concreet model is een tastbare weergave van een proces dat anders ontoegankelijk is. De maker van zo'n model kan delen accentueren of uitvergroten en ook het materiaal hoeft niet overeen te komen met de werkelijkheid. Zo maakten Italiaanse wetenschappers  in de 17e eeuw op kleine schaal de planeet Saturnus na, om Huygens' hypothese dat de planeet ringen heeft te toetsen. Ze lieten leken van een afstandje naar het beeld kijken, terwijl er met lampjes op geschenen werd. Wat bleek? Zij zagen precies hetzelfde als astronomen wanneer die naar de ruimte keken. Op die manier bevestigden ze zijn hypothese.

Wiskundige of abstracte modellen functioneren als een soort bemiddelaars tussen theorie en realiteit. We zien natuurwetten vaak als representaties van de werkelijkheid. Maar zo’n wet zegt op zich zelf nog niets, aldus Wegener. Om een natuurwet betekenisvol te maken is een model nodig, waarin je waarden kan toevoegen. Zo kan je verklaren waarom als je een veertje en een loden bal laat vallen ze niet tegelijk op de grond aankomen, ondanks Galileo’s natuurwet van de gelijke valversnelling.  Niet onze wetten, maar onze modellen beschrijven (een deel van) de werkelijkheid.

Tot slot bieden modellen een bron van inspiratie voor verder onderzoek. Het tekenen van analoge modellen geeft wetenschappers de mogelijkheid tot in detail na te denken over specifieke aspecten van een idee, bijvoorbeeld over de vraag: “Hoe ver kan een molecuul bewegen voordat het botst met een ander molecuul?” Een molecuul teken je als een bolletje, de bewegingsrichting als een pijltje, etc. Door een voorstelling te maken van een proces pogen wetenschappers het verschijnsel beter te begrijpen, zodat ze misschien zelfs nieuwe relaties kunnen afleiden. Deze modellen hebben dus vooral een belangrijke rol in de creatieve fasen in wetenschappelijk onderzoek.

Wegener: "Modellen representeren de werkelijkheid gedeeltelijk, toch is dat niet altijd een probleem, in de praktijk hebben modellen steeds een specifiek doel."

Objectiviteit en werkelijkheid

Modellen representeren dus nooit de hele werkelijkheid, de wetenschapper maakt keuzes door delen te vergroten, te accentueren of juist helemaal weg te laten. In hoeverre kan een model dan een objectief beeld schetsen? Daarvoor moeten we eerst kijken naar wat we precies bedoelen met objectiviteit. “Objectiviteit was niet altijd het hoogste doel, dat is een recent ideaal,” vertelt Wegener. Neem bijvoorbeeld afbeeldingen in wetenschappelijke atlassen. Tot ver in de 19e eeuw was truth to nature het ideaal. Wetenschappers zochten naar wetmatigheden in de natuur. Een voorbeeld is Goethe’s Urpflanze, een soort ‘archetype’ of ‘ideale vorm’ die in alle planten is terug te zien. Om de ‘echte plant’ te zien moest je volgens Goethe door de natuurlijke variëteit van de individuele plant heen kijken.

Een ander voorbeeld is het onderzoek van Arthur Worthington, bekend voor zijn onderzoek naar vloeistofdynamica. Met precisie tekende hij hoe waterdruppels op een oppervlak vallen. Hij was onder de indruk van de symmetrie van de uiteenspattende druppels. Afwijkingen legde hij niet vast. Waarom zou je een eenmalige variatie vastleggen, wanneer je op zoek bent naar patronen? Twintig jaar later slaagde hij erin om dezelfde druppels vast te leggen met foto’s. Wat bleek? De druppels op de foto’s vertoonden veel meer onregelmatigheden dan je zou verwachten op basis van de tekeningen. De foto’s gaven een ‘objectief’ beeld van de uiteenspattende druppel. Hoe had hij al die jaren symmetrie kunnen zien, vroeg hij zich af. Zijn eigen analyse was dat de meeste variaties eenmalig zijn. Je vergeet ze daardoor snel. Wat overblijft in je hoofd is een soort ‘ideale’ druppel. Zijn eigen oordeelsvermogen had hem misleid.

Die conclusie leidde tot een nieuw perspectief. Versimpelen en het zoeken naar patronen werd een ‘wetenschappelijke zonde’. Mechanische registratie moest de mens behoeden voor het wegdenken en gladstrijken van onregelmatigheden. De ‘werkelijkheid’, concludeerden wetenschappers, bestond juist uit individuele gevallen. Toch kiezen we bij het maken van een modellen nog steeds voor een ideaaltypische weergave, wetende dat die niet voor iedereen klopt. Hoe wetenschappers daar in verschillende vakgebieden mee omgaan, horen we in de komende weken. 

Op 15 februari spreekt proefdierkundige prof. dr. Merel Ritskes-Hoitinga (RUG). Zij doet onderzoek naar muizen. Hoe vertaal je resultaten van diermodellen naar de mens? 
Kijk de lezing 'Representaties onder de loep' terug.

Nienke de Haan (student-assistent)
Copyright Studium Generale
Doorplaatsen uitsluitend met toestemming en onder vermelding van link en auteur.

Opname

Delen